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Analytical and numerical methods are applied to investigate the transient evolution
of an inviscid bubble in two-dimensional Stokes flow. The evolution is driven by
extensional incident flow with a rotational component, such as occurs for flow in a
four-roller mill. Of particular interest is the possible spontaneous occurrence of a cusp
singularity on the bubble surface. The role of constant as well as variable surface
tension, induced by the presence of surfactant, is considered. A general theory of time-
dependent evolution, which includes the existence of a broad class of exact solutions,
is presented. For constant surface tension, a conjecture concerning the existence of
a critical capillary number above which all symmetric steady bubble solutions are
linearly unstable is found to be false. Steady bubbles for large capillary number Q
are found to be susceptible to finite-amplitude instability, with the dynamics often
leading to cusp or topological singularities. The evolution of an initially circular
bubble at zero surface tension is found to culminate in unsteady cusp formation. In
contrast to the clean flow problem, for variable surface tension there exists an upper
bound Qc for which steady bubble solutions exist. Theoretical considerations as well
as numerical calculations for Q > Qc verify that the bubble achieves an unsteady
cusped formation in finite time. The role of a nonlinear equation of state and the
influence of surface diffusion of surfactant are both considered. A possible connection
between the observed behaviour and the phenomenon of tip streaming is discussed.

1. Introduction
Interest in the possible spontaneous occurrence of singularities on free surfaces in

Stokes flow stems from experimental observations of the development of apparent
corners or cusps in several classes of flows. The corners or cusps may appear briefly
during time-dependent evolution, or persist in a steady state. Joseph (1992) and
Pozrikidis (1997) review some of the flows where corner and cusp development are
known or are expected to occur.

The pioneering experiments of G. I. Taylor were among the first to exhibit cusp
formation on free surfaces in low Reynolds number flow. Taylor (1934) filled a
four-roller mill (figure 1) with a highly viscous fluid and rotated the rollers in the
directions shown, producing a strain flow in the neighbourhood of a drop or bubble at
the centre of the mill. He then measured the dependence of steady drop deformation
on a non-dimensional strain parameter Q = 2µGR/σ0, where µ is the viscosity of
the outer fluid, G is a parameter characterizing the strain rate far from the drop (G
is related to the rotation rate of the rollers), and R is the undeformed drop radius.
The most interesting behaviour occurred when the drop viscosity was much less than
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Figure 1. Taylor’s four-roller mill. The four cylindrical rollers are rotated in the directions shown,
producing a strain flow at the bubble in the centre of the mill.

that of the exterior fluid, so that the drop could be treated as an essentially inviscid
bubble. Although the bubble was ellipsoidal in shape at low rotation rates, there
existed a critical rotation rate Q = 0.41 at which the bubble suddenly developed
pointed ends. Taylor noted that in fact this state was not a true steady state as ‘a thin
skin appeared to slip off the bubble surface’. Later experiments (see e.g. de Bruijn
1993 and references therein) showed that jets or small bubbles may be emitted from
the pointed ends, a process known as tip streaming. After a certain time had passed
(holding the rotation rate constant) Taylor observed that the rounded bubble ends
re-emerged, and the resulting steady bubble was smaller than the original one. This
rounded configuration persisted until Q = 0.65, at which point the ends once again
suddenly became pointed. This new pointed configuration remained stable; at the
maximum attainable strain (Q = 2.45) the drop still showed no sign of tip streaming
or burst. The experiment was repeated and extended by others with similar results
(see e.g. Torza, Cox & Mason 1972; Grace 1982; de Bruijn 1993), although in some
cases the tip streaming is absent (Bentley & Leal 1986).

Analytical solutions for a three-dimensional bubble in slow viscous flow are not
at present known, although asymptotic analysis using a slender drop assumption in
axisymmetric flow has been performed by several authors (see e.g. Buckmaster 1972;
Acrivos & Lo 1978; Hinch & Acrivos 1979; Sherwood 1984). However, these analyses
encounter difficulties in resolving details of the flow and drop shape near the pointed
ends. As a result, theoretical and computational studies of singularity formation in
Stokes flow have mostly been limited to steady flow in two dimensions. Singularity
formation on a free surface produced by counter-rotating cylinders in various classes
of steady flows has been considered in Joseph et al. (1991), Joseph (1992), Jeong
& Moffatt (1992), and Antanovskii (1996). In many cases explicit steady solutions
have been provided by employing complex-variable techniques. Most relevant to the
present study is the work by Antanovskii (1996), which includes a remarkable class
of explicit steady solutions to a two-dimensional model of evolution in a four-roller
mill which takes into account the rotational nature of the far–field flow. The steady
bubbles are parameterized by the capillary number Q and a second non-dimensional
parameter ε = CR2/L2, where R is the undeformed bubble radius, L is the half-size
of the mill side, and C is a dimensionless constant. For finite capillary number Q and
all ε > 0 the steady bubble interface is found to be smooth but for Q large enough
possesses regions of high curvature that exhibit the form of apparent cusps; these
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are expected to become true cusps in the limit of vanishing surface tension. Similar
behaviour is obtained in the other cited examples of flow due to counter-rotating
cylinders. Related analyses of two-dimensional flows include Richardson (1968, 1973)
and Buckmaster & Flaherty (1973).

Much less effort has been devoted to investigating the transient development of
cusped interfaces. The evolution of contracting bubbles is considered in Tanveer &
Vasconcelos (1995), and true cusp development is observed for zero surface tension,
but is inhibited for positive surface tension. The unsteady version of some rotating
cylinder flows is investigated via boundary integral numerical simulation by Pozrikidis
(1997, 1998). Particular attention is paid to the unsteady evolution for zero surface
tension (i.e. Q→∞) where the presumed existence of steady bubble solutions with true
cusps suggests the possibility of spontaneous cusp formation during the transient evo-
lution. However, employing Antanovskii’s model of Taylor’s four-roller mill, Pozrikidis
observed neither steady nor unsteady cusped shapes during the transient deformation
for vanishing surface tension. Instead, ‘jets’ were viewed to emerge from the bubble
ends in a manner reminiscent of tip streaming. It was suggested that the steady shapes
are stable only when Q is less than a critical value that depends on the particular
details of the far-field flow. Due to numerical difficulties associated with the large
interfacial curvature at the bubble tips, the value of this critical capillary number was
not ascertained. Pozrikidis (1998) also considered the effect of variable surface tension,
induced by the presence of surfactant, on the transient deformation of nearly cusped
bubbles. Although the computations again were quite delicate owing to the large
curvature, it was concluded that the presence of surfactant may cause the bubble tips
to become pointed. It is important to note that whereas steady cusps may occur only
for vanishing tension, transient cusps are allowed in principle for any value of tension.
However, to our knowledge the only example of a true singularity in time-dependent
flow for non-vanishing tension is that due to Richardson (1997), involving the coales-
cence of five liquid cylinders. Other analyses of time-dependent free surfaces in Stokes
flow include Hopper (1990), Richardson (1992), and Howison & Richardson (1995).

In this paper, we address by combined analytical and numerical techniques the
possible formation of singularities during the transient evolution of a two-dimensional
bubble in Taylor’s four-roller mill. First, the evolution of a clean bubble in Antan-
ovskii’s model of Taylor’s four-roller mill is revisited. The question of the stability
of the steady solutions is examined numerically. For the value of ε corresponding to
the large initial bubble in Taylor’s experiment, the steady-state solutions are found
to be linearly stable for all values of Q. Furthermore, boundary integral simulations
employing a quite general conformal map representation of the interface show that a
circular initial bubble shape will evolve to the analytical steady solution for all values
of Q. We also clarify the picture for Q = ∞. Here, the transient evolution starting
from a circle is found to lead to an unsteady cusped bubble; indeed, it is shown
that there is no physically acceptable steady shape for vanishing surface tension. The
behaviour observed here therefore differs somewhat from the tip streaming instability
observed for Q = ∞ in Pozrikidis (1997). The differences illustrate the truly delicate
nature of computing the evolution of nearly cusped shapes. A possible reason for
the disparities lies in an observed instability of the steady surface to finite-amplitude
perturbations at large Q – this is further discussed in § 3.

Complex-variable methods are used to derive general properties of the time-
dependent evolution both with and without surfactant in § 4. These results are in
some sense a generalization of the theory developed for linear far-field flow in Siegel
(1999) and Tanveer & Vasconcelos (1995), and potential flow in Antanovskii (1994c).
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However, the application here to nonlinear, rotational far-field flow leads to an essen-
tial difference, which we now describe (the terms linear and nonlinear in this context
are defined in § 2). In essence, all these theoretical results use a conformal map z(ζ, t)
which maps the interior of a unit disk in the ζ-plane to the physical flow domain at
the exterior of the bubble. The location of the free surface at a time t is given by
z(ζ, t) = x(ν, t) + iy(ν, t) for ζ = eiν on the arc of the circle. In the case of linear or
potential flow, two important results provide a framework for the transient theory.
One is that there is no spontaneous generation of singularities of z in the complex
plane, and secondly no singularities move into the finite complex plane from infinity.
Unfortunately, neither of these results holds for the far-field flow considered in this
paper. However, we show that these properties do hold for a particular class of
conformal maps, which form a dense set in the class of all smooth initial shapes.
The importance of this lies in the fact that, within this class, the infinite-dimensional
dynamical system for the evolving interface reduces to an ‘exact solution’ composed
of a finite-dimensional system of ODEs for the motion of singularities and the time
evolution of their amplitudes.

We also investigate whether variable surface tension, as induced by the presence of
surfactant, may promote true singularity formation during time-dependent evolution.
The motivation for this study comes from the experiments of de Bruijn (1993), which
suggest that unsteady cusp formation followed by tip streaming only occurs when
interfacial tension gradients develop, for example due to the presence of surfactant.
The investigations here may be viewed as a continuation of the author’s earlier paper
(Siegel 1999), in which exact solutions for the steady deformation of a two-dimensional
bubble with surfactant are derived. In contrast to the clean flow problem, the steady
solution branches were found to terminate, with the termination point corresponding
to a bubble with a true cusp (i.e. infinite curvature). This behaviour implies that there
is an upper bound Qc on the strain rate for which a steady bubble solution can exist.
It was suggested that for larger strains, the time-dependent evolution would lead to
unsteady cusp-shaped profiles, much like that seen in experiments. However, time-
dependent solutions were not obtained. Previously, Antanovskii (1994a) considered
the effect of surfactant on the steady interfacial profiles induced by a pair of counter-
rotating point vortices below a free surface, although again the transient evolution
was not considered.

In the present paper, the time-dependent evolution of the bubble and surfactant
distribution is obtained using the reduced evolution equations derived in § 4. This en-
ables general deductions to be made concerning the motion and allows the interfacial
evolution to be computed nearly up to cusp formation. After a brief summary of the
steady-state results in Siegel (1999) and their extension to include surface diffusion of
surfactant, numerical simulations in § 5 of the transient evolution for Q > Qc show that
the bubble reaches an unsteady cusped formation, much as in Taylor’s experiments.
Such a bubble can be viewed as a precursor to tip streaming. Our solutions show that
the presence of positive but variable surface tension leads to time-dependent cusps
in situations for which constant surface tension does not produce cusps. Comparison
with experiment shows some intriguing similarities, despite the drastic simplifications
employed in the model.

2. Governing equations
Consider an inviscid bubble placed in two-dimensional slow viscous flow. The

bubble is considered to be neutrally buoyant, so that gravitational effects can be
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ignored. The fluid outside the bubble has a large viscosity µ and is taken to be
incompressible, whereas the fluid inside the bubble is assumed to have negligible
viscosity. Thus the bubble pressure is constant; without loss of generality the constant
is chosen to be zero. Neglecting inertial effects, the fluid motion is governed by the
Stokes equations

µ∇2u = ∇p, ∇ · u = 0, (1)

where u(x, y) is the fluid velocity and p is the pressure.
On the bubble boundary the kinematic condition u · n = Un holds, where Un is the

normal velocity of the interface. In addition we require a balance of stresses, which
is written as

−pn+ 2µn · S = σκn− ∇sσ, (2)

where n is the outward normal unit vector, S is the rate-of-strain tensor whose j, k
component is given by sj,k = (1/2)(∂uj/∂xk + ∂uk/∂xj), κ is the interfacial curvature,
σ is the surface tension, and ∇s is the surface gradient operator. The last term in (2)
represents the Marangoni stress resulting from a non-uniform surface tension.

The bubble is considered to contain a fixed amount of insoluble surfactant. The
relationship between the surface tension and surfactant concentration (measured in
units of mass of surfactant per unit of interfacial length) is given by an equation
of state of the form σ = σ(Γ ). Typically a linear equation of state is employed to
examine the effect of surfactant on bubbles in extensional flows. Such a relationship is
valid for dilute surfactant concentrations. However, for large non-dimensional strain
Q the surfactant accumulates near convergent stagnation points in the flow and so
the surfactant concentration can no longer be considered dilute. For this reason a
nonlinear equation of state is more appropriate. Although there is a large number
of nonlinear equations available in the literature, any of these may be incorporated
into the general theory developed here. For definiteness we choose to employ the
Langmuir equation (Edwards, Brenner & Wasan 1991)

σ = σ0[1 + β ln (1− Γ/Γ∞)],

where σ0 is the surface tension of the clean interface, Γ∞ is the maximum concentration
of surfactant (producing complete coverage of the bubble as a unimolecular film),
and β is a dimensionless parameter defined by β = RTΓ∞/σ0, with R the gas
constant and T the temperature. Strictly speaking, this equation applies for sol-
uble surfactant. However, it has been previously used in studies involving insoluble
surfactant (Milliken, Stone & Leal 1993).

An equation describing the time-dependent behaviour of Γ is also required. It takes
the form of a convection–diffusion equation (see Wong, Rumschitzki & Maldarelli
1996)

∂Γ

∂t

∣∣∣∣
s

− ∂X

∂t
· ∇sΓ + ∇s · (Γus)− Ds∇2

sΓ + Γκu · n = 0, (3)

where ∇s is the surface gradient, us represents the velocity vector tangent to the
interface, X (s, t) is a parametric representation of the interface, and Ds is the surface
diffusivity. Here we have considered the surfactant to be insoluble, i.e. there is no net
flux of surfactant to and from the interface from the bulk liquid.

To complete the problem statement, the following flow is specified at infinity:

u∞ = (Gx+ G1[x
3 + 3xy2],−Gy − G1[3x

2y + y3]),

p∞ = P∞ + 6G1µ(x2 − y2),

}
(4)
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where G and G1 are parameters characterizing the rate of strain and P∞ is an
as yet undetermined pressure at the mill centre. This form of the far-field flow
was determined by Antanovskii (1996), who used a boundary integral method to
numerically compute the two-dimensional velocity field produced by the four rotating
rollers when no drop is present. This was then used to obtain the parameters in a
local expansion of the flow field at the centre of the mill. The result is expression
(4), which is used as the far field for the inner flow around a drop in an unbounded
fluid. Note that this far-field flow is the superposition of a linear (pure strain) velocity
field, characterized by rate of strain parameter G, and a rotational motion described
by cubic terms, characterized by the additional rate-of-strain parameter G1.

The preceding problem can be recast in terms of non-dimensional quantities if the
velocity is rescaled by GR (where πR2 is the initial bubble area), surface tension by
σ0, pressure by Gµ, surfactant concentration by Γ∞, and length and time by R and
1/G. The problem is then completely characterized by the dimensionless parameters

Q =
2µGR

σ0

, ε =
G1R

2

G
=
CR2

L2
, Pes =

σ0R

µDs
, χ =

Γi

Γ∞
, and β,

where Q is the non-dimensional strain (Q is of the form of a capillary number), Pes
is the modified surface Péclet number and 2πΓi is the fixed amount of surfactant on
the bubble surface.†

2.1. Complex-variable formulation

The complex-variable representation of two-dimensional Stokes flow has been widely
employed to study the motion of drops and bubbles in various flows (see e.g. Hopper
1991; Richardson 1992; Tanveer & Vasconcelos 1995 and references therein). As the
formulation of Siegel (1999) is easily modified to account for the cubic terms in the
far-field flow, we present the relevant formulas here without derivation.

Introduce the stress–stream function W (z, z̄) = φ(x, y) + iψ(x, y) where z = x+ iy
and the bar denotes complex conjugate. It is well known that for Stokes flow φ
and ψ satisfy the biharmonic equation. According to the Goursat representation for
biharmonic functions (Mikhlin 1957) W (z, z̄) can be written W (z, z̄) = z̄f(z) + g(z)
where f and g are analytic functions in the fluid region. We observe that the form
of the far-field flow (4) computed by Antanovskii (1996) leads to the following
non-dimensional expression for the stress–stream function as z →∞:

W∞(z) =
1

2

[
(1 + ε|z|2)z2 +

p∞
2
|z|2
]
. (5)

The far-field flow is called nonlinear if f(z) or g′(z) behave at infinity like a nonlinear
polynomial in z, which is the case in (5). In general the far-field flow has a rotational
component when f is nonlinear in z.

At this point it is convenient to consider a conformal map z(ζ, t) which takes the
unit disc in the ζ-plane into the fluid region of the z-plane. This map can be written
in the form

z(ζ, t) =
γ0(t)

ζ
+ h(ζ, t), (6)

† Alternatively, the velocity may be rescaled by σ0/µ, pressure by σ0/R, and time by Rµ/σ0. The
modified Péclet number is related to the usual Péclet number Pe = GR2/Ds by Pe = QPes/2. The
modified Péclet number is preferable in studies of shear-induced drop deformation, since it depends
on material properties only.
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where h is analytic and zζ 6= 0 in the region |ζ| 6 1 over some non-zero time interval.
The extra degree of freedom allowed by the Riemann Mapping Theorem permits γ0

to be chosen real and positive. Symmetry about the x- and y-axes is enforced by
requiring

−z(−ζ) = z(ζ), z̄(ζ̄) = z(ζ). (7)

Note that the form (6) of the map z and the far-field condition (5) imply that

f(ζ, t) ∼ εγ3
0

2ζ3
+
p∞γ0

4ζ
+ O(1), g′(ζ, t) ∼ γ0

ζ
+ O(1) (8)

as ζ → 0.
After writing the physical quantities in terms of f and g as in Tanveer & Vasconcelos

(1995) and Siegel (1999), the kinematic boundary condition can be shown to have the
form

Re

{
zt + 2f

ζzζ
+
εγ2

0

ζ2

}
=

τ

Q|zζ | + Re

[
εγ2

0

ζ2

]
(9)

on |ζ| = 1, where τ = 1 + β ln (1 − Γ ) is the non-dimensional surface tension. Note
that the term Re [εγ2

0/ζ
2] has been added to both sides of the kinematic equation

to remove the singularity from the term in braces. This singularity is a consequence
of the cubic nature of the far-field flow; no additions are necessary for linear flow,
and other additions can be made to remove the singularity for higher-order flows.
An evolution equation for the map z(ζ, t) in |ζ| < 1, which is useful in the general
theory developed in § 4, can now be obtained by an application of the Poisson Integral
Formula (Mikhlin 1957) to (9), with the result

zt + 2f(ζ, t) = ζzζ

[−εγ2
0

ζ2
+ I(ζ, t)

]
, (10)

where

I(ζ, t) =
1

2πi

∮
|ζ ′ |=1

dζ ′

ζ ′

[
ζ ′ + ζ

ζ ′ − ζ
]{

τ(ζ ′, t)
Q|zζ(ζ ′, t)| + Re

[
εγ2

0

ζ2

]}
. (11)

Note that I(ζ, t) depends on the surfactant distribution via the term τ(ζ ′, t) in the
integrand.

Equation (10) describes the time evolution of the conformal map in a way that is
useful in the general theory. However, for the purposes of computing the map z(ζ, t)
a different form of the evolution equation is more convenient. This is derived from
the dynamic boundary condition following Tanveer & Vasconcelos (1995) with the
result

g′(ζ, t) =
z̄(ζ−1, t)

2

{
zζt(ζ, t)

zζ(ζ, t)
− ζ

[
Iζ(ζ, t) +

2εγ2
0

ζ3

]
−
[
1 +

ζzζζ(ζ, t)

zζ(ζ, t)

] [
I(ζ, t)− εγ2

0

ζ2

]}

+
1

2

{
z̄ζ(ζ

−1, t)

ζ
I(ζ, t) + z̄t(ζ

−1, t) + z̄ζ(ζ
−1, t)

εγ2
0

ζ3

}
, (12)

which is originally valid on the unit circle but is extended off through analytic
continuation. Note that in the case of linear far-field flow, with ε = 0, the expression
(12) agrees with that previously derived in Tanveer & Vasconcelos (1995). The
requirement that the right-hand side of (12) is analytic in |ζ| < 1 (except for a
known singularity at ζ = 0) determines the time evolution of the map z(ζ, t). Explicit
evolution equations for the map parameters such as γ0(t) in some special cases will
be provided in § 4.
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Figure 2. The dependence of deformation D on capillary number Q for Antanovskii’s steady-state
solution (i.e. no surfactant). Branches are shown for ε = 0.01 and ε = 0.0025. Also shown is the
transient evolution for ε = 0.01, computed using the general conformal map method. For each Q,
the crosses represent the deformation of a time-evolving bubble starting from a circle (D = 0) at
t = 0. The time increment between crosses is ∆tm = 0.75. The transient solution converges to the
steady state for all finite Q.

Finally, the complex-variable formulation of the equation for Γ (ζ = eiν , t) is
obtained from the non-dimensional version of (3). The result is

∂Γ

∂t

∣∣∣∣
ν

− Re

(
Γν

zν
zt

)
+

1

|zν |
∂

∂ν
ReP (ν, t) − 1

|zν | Im
(
zνν

zν

)
ImP (ν, t)

=
2

QPes

1

|zν |
∂

∂ν

(
Γν

|zν |
)
, (13)

where P (ν, t) = (u1 + iu2)z̄νΓ/|zν | and u1+iu2 is the complex velocity. The function Γ is
required to satisfy the imposed symmetries Γ (−ν, t) = Γ (ν, t) and Γ (π+ν, t) = Γ (ν, t).
Note that the total amount of surfactant is fixed, so that the integral

T =

∫ 2π

0

Γ |zν |dν (14)

is a conserved quantity.

3. Transient evolution, clean flow problem
In this section we consider the transient evolution of an arbitrary bubble shape

immersed in the far-field flow (5), when surfactant is absent. Previously, Pozrikidis
(1997, 1998) considered the process of cusp formation in this flow using an adaptive
boundary integral method which explicitly incorporated the four-fold bubble sym-
metry. We briefly summarize his results in the case ε = 0.01, which corresponds to
the value of ε for the larger initial bubble in Taylor’s experiment (Antanovskii 1996).
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Define the deformation of the bubble by

D =
Rmax − Rmin

Rmax + Rmin

,

where Rmax and Rmin are the maximum and minimum distances from the origin to a
point on the bubble surface. The steady solution branch determined by Antanovskii
for ε = 0.01, represented by plotting D versus Q, is shown is figure 2. The leftmost
portion of the curve, between Q = 0 and Q = 0.6, represents rounded bubble profiles.
In contrast the bubble shapes along the flat upper portion of the curve are cusp-like
(although smooth) and show a remarkable similarity with the bubble profiles observed
in the experiments of Taylor. When Q is less than 0.6, Pozrikidis observed the bubble to
evolve into the steady-state solution, with excellent agreement between the theoretical
and numerical steady profile. At finite Q greater than about 0.7, numerical difficulties
associated with the large curvature at the bubble tips prevented the computation
from continuing for long enough times to reach the steady state. More interesting
phenomena are noticed for vanishing surface tension (Q = ∞), at which the bubble
is observed to evolve toward a cusped configuration but before the curvature gets
too large the bubble develops two symmetric necks and ejects ‘jets’ into the fluid in a
process reminiscent of tip streaming. The Q = ∞ evolution never resulted in a truly
cusped profile, steady or unsteady. This behaviour led Pozrikidis to conjecture that
the theoretical steady shapes are stable only when Q is less than a critical capillary
number, the value of which depends on ε. Numerical difficulties stemming from the
large interfacial curvature prevented a determination of the critical value.

We investigate this conjecture by performing two tasks. First, the linear stability of
the theoretical steady solutions is examined. Define the perturbation z̃ by

z(ζ, t) = zs + ηz̃ (15)

where zs denotes a particular steady solution and |η| � 1. This function z̃ is expanded
in a Laurent series as

z̃ =

∞∑
j=−1

aj(t)ζ
j . (16)

In the standard way, the evolution equations for z̃ linearized about zs admit normal
mode solutions of the form aj(t) = eσtâj . As discussed in Appendix A, an appropriate
discretization of the linearized evolution equations leads to a generalized eigenvalue
problem for the eigenvalue σ and truncated eigenvector (â−1, . . . , âN−2)

T , which is easily
solved. Note that if the symmetry restrictions (7) are applied to the perturbation z̃,
then âj is real and satisfies âj = 0 for j an even integer.

The numerical method is verified by checking that in the limit Q → 0 the results
agree with analytically computed eigenvalues σk = −k/Q for k = 0, . . . , N − 1 with
corresponding eigenvectors âj = 1 if j = k − 1 and âj = 0 otherwise. A comparison
of the numerical results for N = 1024 and N = 512 shows that the 16 smallest
eigenvalues (in absolute value) and their corresponding eigenvectors are accurate
to nine digits. The results of the linear stability calculation for four-fold symmetric
bubbles at ε = 0.01, corresponding to the calculations of Pozrikidis (1998), are shown
in figure 3. This figure depicts the three largest non-zero eigenvalues for a range
of Q. The key feature is that σk is negative for all k, indicating stability for linear
theory. No linearly unstable modes were found for finite Q in the symmetric case. It
is interesting to note that if the reflection symmetry about the y-axis is relaxed, so
that the perturbation z̃ is allowed to contain even powers of ζ, then the evolution
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Figure 3. The three largest non-zero eigenvalues to the linearized evolution equations, plotted
versus Q. (a) Four-fold symmetric bubbles with ε = 0.01. (b) Asymmetric bubbles, with the reflection
symmetry about the y-axis relaxed (ε = 0.01). (c) Four-fold symmetric bubbles with ε = 0.0025.

becomes linearly unstable for a range of Q. Figure 3(b) depicts the largest eigenvalues
for an asymmetric perturbation z̃ containing only even powers of ζ. The dominant
component of the unstable eigenvector corresponds to a pure translational motion of
the bubble. This instability is in fact observed in experiments, but is easily controlled
by slightly varying the relative speed of the rollers (Taylor 1934).

At smaller ε (i.e. ε < 0.004) the D(Q) curve is no longer monotonic. For example,
figure 2 shows the steady-state response curve for ε = 0.0025, corresponding to the
second, smaller, steady bubble in Taylor’s experiment (Antanovskii 1996). Antanovskii
hypothesized that the upper and lower solution branches are stable. This implies a
hysteresis loop where there is a transition from a steady rounded bubble on the lower
branch to a steady cusp-like one on the upper branch at the turning point Q = Qt,
with the reverse transition occurring at the upper-branch turning point. However,
simulations in Pozrikidis (1998) suggest that the lower branch is stable while the
upper branch for Q > Qt is unstable, consistent with the conjecture of a critical
capillary number for instability. The results of our linear stability calculation for a
four-fold symmetric bubble with ε = 0.0025 are shown in figure 3(c). There is a band of
positive eigenvalues for 0.605 < Q < 0.615 associated with the portion of the response
curve between the turning points, indicating that this branch is unstable. However,
we find that the upper branch is linearly stable at least up to Q = 0.7, which was the
maximum Q considered when N = 1024. Transient simulations described subsequently
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show that the upper branch is in fact stable to small perturbations for all finite Q.
This supports the physical relevance of the hysteresis loop. The instability of the
upper branch observed in Pozrikidis (1998) illustrates a sensitivity to perturbations
for nearly cusped interfaces, which becomes more pronounced as the steady interface
approaches a true cusp. This is further elaborated later in this section.

Nonlinear stability is investigated by computing the transient evolution starting
from an arbitrary smooth initial shape. We employ a boundary integral method,
described in Appendix A, that is basically similar to that described in Antanovskii
(1994b) but with a few improvements that let us effectively compute bubbles even
with very sharp ends. The method utilizes the conformal map parameterization, but
is quite general in that no assumptions are made concerning the form of the map.
We note that it is critical to apply a dealiasing procedure that is described there.
Without this procedure inaccuracies can develop over time and lead to termination of
the code. The number of points N in the discretization of z can be kept quite small,
since the cusp corresponds to a zero of zζ and singularities in z(ζ, t) are far from the
unit disk. In this sense the conformal map parameterization is optimal. The numerical
method is checked by comparing the computed solution, starting from an initially
circular bubble, with that obtained from a more specialized code that utilizes the
reduced representation discussed in § 4. The two methods are found to be in complete
agreement.

Figure 2 also depicts the time-dependent deformation of a circular bubble, for
ε = 0.01 and various Q values. At a given Q, the crosses represent the bubble
deformation at discrete times separated by an interval of 0.75. The uppermost cross
for each Q represents the computed steady deformation, i.e. the cross position for still
larger t does not change enough to be observable on the plot. Clearly there is excellent
agreement between the theoretical and numerically computed steady deformation. We
take this agreement as additional verification of the numerical method for general z.
Although for purposes of illustration figure 2 is restricted to the range 0 6 Q 6 2,
our numerical simulations show that an initially circular bubble is attracted to the
theoretical steady-state solution for all finite values of Q.

The bubble deformation in the case Q = ∞ is shown in figure 4. The bubble
evolves toward a cusped configuration (figure 4a) with rapid growth in the curvature
(figure 4b). The general theory of § 4 shows that a physically acceptable steady
solution does not exist here, and the considerations of that section combined with
the simulations here lead us to conclude that for Q = ∞ the dynamics results in
unsteady cusp formation. Near the critical time tc for blow up, the functional form of
the curvature is given by κ ∼ c(tc − t)−2, where tc is estimated to be 0.935 (see inset,
figure 4b). Unlike the calculations of Pozrikidis (1997, 1998), we do not observe a tip
streaming instability when starting from an initially circular bubble. The differences
in behaviour may be due to the differing parameterizations employed in the respective
calculations. The conformal map parameterization used here provides a particularly
compact representation of the interface, i.e. it requires only a few Fourier modes to
accurately represent the cusp singularity. A different parameterization, such as one
using an arclength variable, will require many modes to accurately represent a cusping
interface. The evolution may then be sensitive to small errors in the large-k modes.
Such errors, which are present due to roundoff, truncation and time-differencing errors
may smooth the cusp and allow the evolution to continue beyond the singularity. In
addition, point insertion at regions of large curvature may be a smoothing operation.
Ceniceros & Hou (2000) discuss similar issues and advantages of conformal map
parameterization in the Hele-Shaw problem.
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Figure 4. (a) Bubble evolution for Q = ∞. The time increment between profiles is ∆tm = 0.2, with
the final increment ∆tm = 0.134. (b) Plot of the curvature at the bubble ends for the evolution in
(a). Inset: the approach to the singularity is described by the functional form κ ∼ c(tc − t)−2, where
tc = 0.935 is the estimated critical time.

Although we do not explore this conjecture further, an illustration of the sensi-
tivity of the evolution to small finite-amplitude perturbations is given in figure 5.
There the motion starting from a slightly perturbed circular bubble of the form
z(ζ, 0) = 1/ζ−0.01/ζ9, with Q = ∞ is depicted. Instead of reaching a steady state, the
bubble generates narrow jets which eventually pinch off, indicating bubble breakup
(see Tanveer & Vasconcelos 1995 for a discussion of bubble breakup in contracting
bubbles). This behaviour is somewhat similar to that observed in Pozrikidis (1997,
1998) for circular-bubble initial data, although the jets here are much finer. Neverthe-
less, this behaviour is suggestive of the role that perturbations in the higher modes
can have on the resulting bubble evolution.

In general, it is observed that a rather large class of perturbations from a steady
bubble configuration results in dynamics leading to interfacial pinch-off or the for-
mation of true cusp singularities (to numerical resolution), rather than returning to
the steady state. This is the case, provided the perturbation is not too small and
the capillary number is sufficiently large. Thus, the steady bubble solutions, though
linearly stable, are subject to finite-amplitude instability for a wide class of perturba-
tions and Q sufficiently large. (On the other hand, perturbations to the steady state
– even quite large ones – along certain directions in phase space would ultimately
evolve back to the appropriate steady solution; the attraction of an initially circular
bubble to the steady-state solution is one example.) Note that there are none of
the nearby (linearly) unstable steady states that usually accompany finite-amplitude
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Figure 6. Evolution of a multi-mode perturbation to the steady, nearly cusped bubble for different
values of the capillary number Q. (a) Q = 80: the evolution leads to tip streaming. (b) Q = 1.2: the
perturbed bubble relaxes to the steady near cusp shape.

instability. There are some indications that the amplitude of a given perturbation
exciting instability decreases as Q increases. For example, figure 6 shows the progress
of a multimode perturbation for two different values of Q. At the larger value of Q,
the perturbation leads to tip streaming. However, as Q is reduced, the tip streaming
is suppressed and the bubble returns to the steady state. It does not appear that the
amplitude of a perturbation leading to instability tends to zero as Q → ∞, although
this awaits further analysis.
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4. General properties of time-dependent evolution and exact solutions
Analytic continuation of (10) into the domain |ζ| > 1 is useful for deriving

global properties of the mapping function z(ζ, t) and general features of the time-
dependent evolution. The continuation is implemented in the usual way using contour
deformation, and leads to the equation (see Tanveer & Vasconcelos 1995; Siegel 1999
for related results)

zt = q1zζ + q2 + q3z, (17)

where the functions q1(ζ, t) to q3(ζ, t) and their asymptotic behaviour as ζ →∞ (which
is useful in the subsequent discussion) are given by

q1(ζ, t) = ζ[I(ζ, t) + εγ2
0ζ

2] ∼ εγ2
0ζ

3 + O(ζ),

q2(ζ, t) = 2ḡ′(ζ−1, t) ∼ 2γ0ζ + O(1),

q3(ζ, t) =
2f̄ζ(ζ

−1, t)

z̄ζ(ζ−1, t)
∼ 3εγ2

0ζ
2 + O(1).

 (18)

Equation (17) may be viewed as a hyperbolic equation for z in the complex region
|ζ| > 1, with characteristic curves defined by the function q1. There is a key difference
between the dynamics exhibited by (17), (18) and that for a bubble evolving in a
linear far-field flow (Tanveer & Vasconcelos 1995; Siegel 1999), or for a bubble
evolving in a nonlinear but irrotational far-field flow (i.e. with g(z) a polynomial in
z), considered in Antanovskii (1994c). For linear or irrotational flow, it is easily seen
from the form of f and the analyticity of I(ζ, t) in the exterior of the unit disk that
the functions ζ−1q1 and q3 are analytic in |ζ| > 1 (including at infinity), and hence
contain only non-positive powers of ζ in their Laurent series, while q2 is analytic in
the finite complex plane. A number of important consequences follow. Among the
most important for the general theory are that the form of pole and branch point
singularities of z in the finite complex plane are invariant with time, and that these
singularities move away from the unit disk; in particular no singularities move into the
finite complex plane from infinity. These properties allow the construction of simple
exact solutions for ζz(ζ, t) that are polynomials in ζ. The nonlinearity of f(z) leads
to the presence of terms of O(ζ) and larger in the expressions for ζ−1q1 and q3 and
erases these conclusions, so that in general singularities will be generated at infinity
and move toward the unit disk. To illustrate this latter fact, note that the evolution
of a singularity located at ζj is determined from ζ̇j = −q1(ζj(t), t) (see equation (20)).
For |ζj | � 1 it follows from (11) that

q1(ζj , t) = −ζj
[
εγ2

0ζ
2
j − 1

Qγ0

]
+ O(1).

Keeping only the leading-order term in ζj and integrating the differential equation
for ζj then leads to

ζj ∼ 1

(2εγ2
0t+ ζ−2

j (0))1/2

for small t. Thus, for small times a singularity generated at large |ζ| moves toward
the unit disk, with the exception of any singularity for which Re ζ−2

j (0) < 0.
Despite this behaviour, there nevertheless exists a very broad class of initial data

for which the number and form of singularities in |ζ| > 1 is preserved in time. The
usefulness of this fact is evident: given a member of this class, the infinite-dimensional
dynamical system for the function z(ζ, t) can be reduced into a finite-dimensional
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dynamical system for the singularity locations and strengths. To describe this class,
consider initial data of the form

z(ζ, 0) =
E(ζ, 0)

ζ
N∏
j=1

(
1− ζ2

ζ2
j (0)

) (19)

where E(ζ, 0) is analytic in the finite complex plane (although it may contain ‘poles’
at infinity) and the ζj(0) are complex numbers satisfying |ζj(0)| > 1. These quantities
are subject to the restriction zζ 6= 0 in the closed unit disk. The form (19) is the most
general one describing a conformal map z(ζ, 0), analytic in |ζ| 6 1 except for a pole
singularity at ζ = 0, containing 2N pole singularities in |ζ| > 1, and satisfying the
symmetries given in (7) (we use the convention ζ2j = ζ̄2j−1 for j = 1, . . . , N to satisfy
the second requirement in (7)).

It is clear that for later times the evolution will be described by a map with the same
form but with time-dependent quantities E(ζ, t) and ζj(t). The governing equations
for these quantities are found by substitution into (17), with the result

Et = q1Eζ − q1

E

ζ
+ 2Eζ

N∑
j=1

[
ζjq1(ζ, t)− ζq1(ζj , t)

ζj(ζ
2
j − ζ2)

]
+ q2ζ

N∏
j=1

(
1− ζ2

ζ2
j

)
+ q3E, (20a)

dζj
dt

= −q1(ζj , t). (20b)

In general, initial data E(ζ, 0) analytic in the finite complex plane will not remain so
for later times. An exception occurs in the case when E(ζ, 0) is a polynomial of order
k, where k 6 2N. To see this, suppose that

E(ζ, t) =

N∑
j=0

γjζ
2j (21)

for γj real and N > 1, which is the most general polynomial of order 2N exhibiting
the desired symmetries. We show that this form for E is preserved over time. Introduce
the projection operator PN , which acts on functions f(ν) with a convergent Fourier

series representation f(ν) =
∑∞

n=−∞ f̂ne
inν and is defined by

PNf =

∞∑
n=N+1

f̂ne
inν .

The complex numbers f̂n are the Fourier coefficients and ν is in general complex
(e.g. the region |ζ| > 1 corresponds to the lower half-plane of ν). After applying the
operator P2N to (20a) and employing the asymptotic behaviour of qi for i = 1, . . . , 3,
the projection D = P2NE is found to satisfy

Dt = 2γ0ζ
2N+2(εγ0γN + δN),

where δN =
∏N

j=1(−1/ζ2
j ). It follows that if γN satisfies

γN = − δN
γ0ε

, (22)

then Dt will be zero for all t. In this case, E(ζ, t) will remain a polynomial of degree at
most 2N for all time, and only the 2N singularities at ±ζj will be present in |ζ| > 1,
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with time-dependent positions given by (20b). On the other hand if E(ζ, 0) contains a
term of O(ζ2N+m) for even integer m > 2, then the right-hand side of (20a) contains a
non-zero term of O(ζ2N+m+2) and all higher (even) powers of ζ are generated in E(ζ, t).
In this case the compact form of z is no longer preserved and new singularities may
be generated. Note that the presence of surfactant influences equation (17) through
the term I(ζ, t), but it does not alter any of the analytic properties and thus does not
affect any of these conclusions.

It remains to be shown that (22) is in fact satisfied by the time-dependent evolution.
This is most easily done by matching the form of the singularity in the governing
equation (12) at ζ = 0. To facilitate this task, we note the asymptotic behaviour of
certain key terms in the limit ζ → 0 is given by

z̄(ζ−1, t) ∼ γN

δN
ζ + O(ζ3) z̄t(ζ

−1, t) ∼ γ̇NδN − δ̇NγN
δ2
N

ζ + O(ζ3)

z̄ζ(ζ
−1, t) ∼ − γN

δN
ζ2 + O(ζ4).

 (23)

The asymptotic behaviour of I(ζ, t) at ζ = 0 readily follows from the Taylor’s
expansion I(ζ, t) = I0(t) +

∑∞
k=1 Îk(t)ζ

k, where (see (11))

I0 =
1

2πQ

∫ 2π

0

τ(ν, t)

|zζ(eiν , t)| dν and Îk =
1

π

∫ 2π

0

(
τ(ν, t)

Q|zζ(eiν , t)| + 2εγ2
0 cos 2ν

)
e−ikν dν.

(24)

Now, equating the coefficients of the O(1/ζ) terms in equation (12) yields, upon
simplification, precisely the desired condition (22). Time-evolution equations for the
remaining coefficients in (19), (21) are determined by enforcing the analyticity of the
right-hand side of (12) in 0 < |ζ| < 1. Specifically, multiplying (12) by [1 − (ζζj)

−2]p

for j = 1, . . . , N and p = 1, 2, then evaluating at ζ = ζ−1
j , gives 2N relations among

the 2N + 1 map parameters (with (22) supplying the final condition). It is easy to see
that the p = 1 relations are simply (20). Unfortunately, the algebra is too complicated
to obtain general formulae for the other coefficients in the case of 2N singularities
exterior to the unit disk. However, we do present the formulae for the simplest case
N = 1. This case includes the time evolution of circular initial data z(ζ, 0) = γ0(t)/ζ,
for which two singularities are generated at infinity and at early times move toward
the unit disk along the real axis.

For convenience denote the N = 1 conformal map by

z(ζ, t) =
γ0 + γ1ζ

2

ζ(1− γ2ζ2)
. (25)

Evaluating condition (22) for N = 1 results in

γ1 =
γ2

εγ0

. (26)

The p = 1 relation is easily found to be

γ̇2 = −2γ2

[
I(γ

1/2
2 , t)− εγ2

0

γ2

]
. (27)

An expression for I(γ
1/2
2 , t) is derived in Appendix B; substituting this into (27) and
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simplifying leads to

γ̇2 = 2γ2

[
εγ2

0

(
1− γ2

2

γ2

)
− 1− γ2

2

πQ

∫ π

0

τ(ν ′, t)
|γ0(1− 3γ2eiν ′)− γ1eiν ′(1 + γ2eiν ′)| dν

′
]

(28)

which is the desired evolution equation for γ2. Instead of performing the algebra
necessary to obtain the p = 2 equation, we simply employ the condition that the drop
area equal π (Antanovskii 1996). This leads to the third relation among the three
map parameters

γ0 =

[
2(1 + γ2

1)

c1 + (c2
1 − c2)1/2

]1/2

, (29)

where

c1 = 1− εγ2
1[2(1− ε) + εγ2

1] and c2 = 4ε2γ2
1(1 + γ2

1)[3 + ε(2 + ε)γ2
1]. (30)

In summary, the three equations (28), (26), and (29) determine the time evolution
of the conformal map parameters γi, i = 0, . . . , 2, in the N = 1 case. These parameters
are functions of the surfactant concentration Γ (ζ, t), which in turn evolves according
to equation (13). Note that the methods described in this section may be used to
derive exact solutions for more general rotational far-field flows, such as when f is a
general polynomial in z.

In contrast to the time-dependent evolution, the steady-state interfacial shape is
necessarily restricted to the form of the N = 1 map (25), but with time-independent
coefficients satisfying (26), (28) with γ̇2 = 0, and (29) (Antanovskii 1996). This result
transcends the restriction to pole singularities implicit in the decomposition (19), and
follows merely from the assumption of polynomial far-field flow of the form (5). Thus,
to reach a steady state starting from initial data of the form (19), (21) with N > 2,
all but two singularities must go off to infinity. An expression relating the capillary
number Q to the steady interface shape and surfactant concentration is determined
from equation (28) by setting γ̇2 = 0. This leads to

Q =
γ1

πγ0

∫ π

0

τ(ν ′)dν ′

|γ0(1− 3γ2eiν ′)− γ1eiν ′(1 + γ2eiν ′)| . (31)

We also note that when Q = ∞ it is possible to evaluate the singularity velocity
q1(ζj , t) analytically. After doing so, the trajectory equation (20) becomes ζ̇j = εγ2

0(ζ4
j −

1)/ζj , which has equilibrium solutions at the four roots of unity. Clearly these steady
solutions, corresponding to unclosed interfacial profiles, are unphysical. The form of
the general time-dependent map suggests that the transient evolution for Q = ∞ will
instead culminate in unsteady cusp formation or in a topological singularity, as is in
fact observed in the simulations of § 3.

5. Bubble with surfactant
The effect of surfactant on the formation of cusped bubbles is now considered.

A singular integral equation that determines the steady surfactant distribution was
determined in Siegel (1999) and takes the form

i

2
H
(
τ

|zν |
)

=
1

Pes

Γν

Γ |zν |2 + εQγ2
0 sin 2ν, (32)

where H is the Hilbert transform, defined by H(f) = (1/2πi)PV
∫ 2π

0
f(ν ′, t) cot(ν ′ −

ν)/2 dν ′.
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Depending on the non-dimensional strain and shape of the bubble, the surface can
be either completely covered with surfactant or contain ‘stagnant caps’ of surfactant,
i.e. regions where Γ > 0 interspersed with regions where Γ = 0 (Siegel 1999). Let
L = {ν : Γ (ν) > 0}, and denote the complement of L by L̄. From the imposed
symmetry L consists of the intervals [−θ, θ] and [π − θ, π + θ], where θ needs to be
determined as part of the solution. It is important to note that (32) holds only for
ν ∈ L.

5.1. Steady bubbles: Pes = ∞
An analytical solution for the steady bubble shape and surfactant distribution was
determined in Siegel (1999) by applying a method based on the reduction of the
singular integral equation to the so-called Riemann problem (Muskhelishvili 1953;
Mikhlin 1957). In this section we present (without derivation) the exact solution and
summarize its salient features, since these provide important clues to the expected
outcome during transient evolution.

Given a steady interface shape, the exact solution to (32) takes the form

τ

|zν | =
1

|zν | + τp + iR1(αω − ᾱ/ω). (33)

The function τp is a particular solution to (32), given by

τp(ν) =
ω(ν)

2πi
PV

∫
L

r(ν ′)
ω(ν ′)

cot
(ν ′ − ν)

2
dν ′ +

1

2πiω(ν)
PV

∫
L

r(ν ′)ω(ν ′) cot
(ν ′ − ν)

2
dν ′,

(34)

where ω(eiν) = [(eiν − ᾱ)(eiν + ᾱ)]1/2 [(eiν − α)(eiν + α)]−1/2 and r(ν) = (i/2)H(1/|zν |) +
εQγ2

0 sin 2ν. Here α = eiθ , and R1 and θ are constants; θ is fixed by the requirement
that the total amount of surfactant on the bubble equal 2πχ, whereas R1 is chosen to
remove the leading-order singularity in τp(ν) at the cap edges, ensuring that the stress
on the bubble is integrable. At the transition from mobile to stagnant surface (i.e.
at the cap edges) there exists an r1/2 singularity in Γ and u and an r−1/2 singularity
in the shear stress, where r is the distance from the cap edge (see Harper 1992 and
Jensen & Halpern 1998 for related results).

Using the general method described in Siegel (1999), the exact steady solution is
evaluated with the nonlinear equation of state. Figure 7 shows the β > 0 response
curves for three representative values of β, and for ε = 0.01. When the bubble is
covered with surfactant, the resulting portion of the response curve is shown as a
dashed line. The portion of the response curve corresponding to the surfactant cap
solution is represented by a solid line. The most interesting feature of the β > 0
curves is the absence of the flat upper portion of the S-shaped curve seen when there
is no surfactant. Instead the response curves terminate after a single turning point.
Figures 8(a) and 8(b) depict the surfactant concentration and bubble profiles at the
representative points A–E along the β = 0.1 response curve.

At the terminal point of the response curve (point E) a true cusped bubble is
formed, i.e. the radius of curvature is zero at ν = 0, π (see figure 8c). At this point the
surface tension also reaches zero, as is required to hold at a steady cusp (Pukhnachov
1973). Numerical evidence shows that the turning point corresponds to a change in
stability for the steady solutions; the lower-branch solutions correspond to stable
steady states whereas the upper-branch solutions are unstable. Thus for capillary
numbers less than the value Qc at a turning point, the time-dependent solution will
evolve toward the proper rounded bubble steady state. For Q > Qc there is no longer
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Figure 7. Response curves (deformation D versus capillary number Q) for β = 0.1, 0.5, and 0.9.
Parameter values are ε = 0.01, Pes = ∞ and χ = 0.5. Dashed curves represent steady bubbles
covered with a non-zero distribution of surfactant, while solid curves denote steady states with
surfactant caps; the location of the transition point is denoted by a cross, as is the terminal point
of each curve. Capital letters and accompanying crosses show the parameter values for the plots in
figure 8.

a steady-state solution. These facts hint at a time-dependent evolution for Q > Qc in
which the bubble continuously evolves until an unsteady cusped (i.e. infinite curvature)
formation is achieved, much as in Taylor’s experiment. Such a bubble can be viewed
as a precursor to tip streaming. The surmised time-dependent behaviour is verified in
§ 5.5.

We comment on the role of the nonlinear equation of state. Roughly speaking,
the exact steady solution for Pes = ∞ is independent of the functional form of the
equation of state. Although this statement is not precisely true (the equation of state
influences the cap angle θ through the normalization relation (14)), it does reflect the
lack of any direct mention of Γ (ν) in (33). Thus, the main role of the equation of
state is in deciding what surfactant distribution is necessary to obtain a given surface
tension distribution satisfying (33). This consideration seems to limit the influence that
differing equations of state can have on the properties of the steady solution. For
example, consider an equation of state τ(Γ ) which does not allow τ→ 0. It might at
first seem that this will preserve the existence of steady solutions for all Q, as well as
the ‘S’ shape of the solution branch seen for constant surface tension (since τ→ 0 is
required in (31) to prevent Q→∞ as a cusped bubble is approached). However, after
trying a number of τ(Γ ) relations with τ bounded away from zero, we find in each
case the steady solution branch terminates when the inversion of τ(Γ ) to obtain Γ (τ)
breaks down, at which point the surfactant cannot distribute itself in such a way as
to obtain the τ required by the exact solution. Thus, the termination of the steady
solution branch seems to be a generic feature when surfactant is present.

5.2. Steady bubbles: Pes < ∞
Numerical solutions for Pes < ∞ are considered in this section in order to examine
the role of surface diffusion on the steady-state interfacial shape. In the case Pes > 1,
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Figure 8. (a) Surfactant concentration Γ versus ν, plotted at five representative points (marked
A–E) along the β = 0.1 response curve (see figure 7). Surfactant caps are centred at ν = 0 and ν = π,
with regions of zero surfactant concentration in between. (b) Bubble profiles at points marked A–E
on the β = 0.1 response curve. (c) Radius of curvature 1/κ and non-dimensional surface tension τ
at the points ν = 0 and π, plotted at β = 0.1 and for a range of the map parameter γ1 (used to
characterize the deformation of the bubble). Note that the surface tension tends to zero at the point
when a cusped bubble is formed.

the steady-state surfactant distribution associated with a given interface shape is
determined using Newton iteration on (32). The basic algorithm is the same as that
employed for rounded bubbles in Siegel (1999).

In contrast, it is found that a very large number of points is necessary to obtain an
accurate solution for bubbles near cusping when Pes is small (i.e. Pes . 1). Newton’s
method, which involves the solution of an N × N matrix equation at each iteration,
is prohibitively slow for N much greater than 1024. In this range, we have found
that a simple method involving fixed-point iteration is more efficient. The fixed-point
iteration scheme employed here takes the form (see (32))

Γ (k+1)
ν = 1

2
Pes|zν |2Γ (k)H

(
τ(k)

|zν |
)
− εQPesΓ (k)|zν |2γ2

0 sin 2ν,

where Γ (k) denotes the kth iterate of Γ (ν) and τ(k) is evaluated using Γ (k). Spectral
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Figure 9. Response curves plotted for several values of Pes. Parameter values are ε = 0.01,
β = 0.5, and χ = 0.5. The curve for Pes = 0.1 actually extends out to Q = 2.419 (not shown).

integration is employed to produce Γ (k+1). The constant of integration Γ0 is determined
from the normalization condition (14). This leads to

Γ0 =

2πχ−
∫ 2π

0

Γ1(ν
′) dν ′∫ 2π

0

|zν |dν ′
,

where Γ1(ν) = Γ (ν) − Γ0 is the periodic part of Γ . Although the convergence of
the iterative scheme is linear, this algorithm requires only O(N ln N) operations per
iteration, so that a very large number of points may be used. Up to N = 8192 points
are used in the simulations reported here. For Pes . 1, the iteration converges even
for bubble shapes that are very near cusped. The method does not converge for Pes
much greater than one, so in that regime the scheme based on Newton’s method is
employed.

Figure 9 presents the response curves at β = 0.5 for several Pes values. At the
terminal point of each curve the implemented iteration scheme no longer converges.
However, it appears that the computed termination point lies near the actual termi-
nation point, where the bubble develops a true cusp and where the surface tension is
zero at ν = 0, π. This is supported by the curvature and surface tension trends as the
terminal point is approached.

Figure 9 clearly shows that as surface diffusion increases, the response curve
smoothly transforms from its form at Pes = ∞ to the form observed in the absence
of surfactant. This behaviour might be expected, since the surfactant distribution is
nearly constant when Pes is small and Q is not too large. In this condition the surface
tension is nearly uniform along the bubble surface and surfactant merely reduces
overall magnitude of surface tension from its clean flow value.

Similar behaviour is observed as the total amount of surfactant (as measured by
χ) is decreased. Specifically, as χ is reduced with Pes held fixed, the response curve
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again deforms toward the form exhibited in the absence of surfactant, much as in
figure 9. The presence of non-zero diffusion appears to be important for this trend.
In particular, when Pes = ∞ the upper, flat portion of the response curve is absent,
regardless of the value of χ.

5.3. Bubble with surfactant: transient evolution

In this section the time-dependent behaviour of the interface is examined. Of particular
interest are the details of the transient dynamics for small surface diffusion and for
capillary numbers greater than the turning point value Qc. The calculations are greatly
simplified by exploiting the analytic structure of the N = 1 conformal map solution
discussed in § 4. Doing so enables computations to be performed nearly up to cusp
formation.

5.4. Numerical method

We start by presenting some preliminary calculations to transform the governing
equations into a form convenient for numerical computation. First differentiate the
area equation (29) to obtain an equation of the form γ̇0 = q[γ1]γ̇1. Upon introducing
the function h(γ1) = c1 + (c1

2 − c2) and differentiating the relation (26) one obtains
the expression

γ̇1 =
γ̇2

ε[γ0 + γ1s(γ1)]
, (35)

where

s(γ1) =
2γ1h− h′(1 + γ1

2)

[2h3(1 + γ1
2)]1/2

and h′ = ∂h/∂γ1. Substitution of (28) into (35) leads to an expression for γ̇1 in
terms of the other map parameters γi; given the surfactant distribution at time t, an
explicit scheme is applied to this equation along with (26) and (29) to obtain the map
parameters at time t+ ∆t.

To describe how the surfactant distribution Γ (ν, t) is updated, it is convenient to
write equation (13) as

∂Γ

∂t
+ Λ1(ν, t)Γνν = F(Γ , Γν, t),

where F(Γ , Γν, t) takes the form F(Γ , Γν, t) = Λ2(ν, t)Γν+Λ3(ν, t)Γ and the coefficients
Λi(ν, t), i = 1, . . . , 3, depend on the interface shape. Assuming that this shape is known
at time t+ ∆t and that Γ (ν, t) is known, then equation (13) is discretized as

Γn+1
j − Γn

j

∆t
+
Λ1(νj , tn)

2∆t
(Γn+1

j+1 + Γn+1
j−1 − 2Γn+1

j ) = F(Γn
j , Γ

n
νj , tn),

where we have introduced the notation Γn
j = Γ (νj , tn) and where Γn

νj denotes the
standard centred difference formula for Γν , centred at νj . The resulting tridiagonal
system can be inverted using standard techniques. Although this implicit Euler method
is only first-order accurate in time, we have found this sufficient for our purposes. It
is not difficult to adapt the method to achieve second-order accuracy. Computations
for Pes = ∞ were performed with a straightforward explicit method, fourth-order
accurate in time and pseudospectral in space. A useful check on the accuracy of either
method is to monitor the total amount of surfactant, which must remain constant.
The total amount of surfactant was found to change by 0.1–0.001% over the length of
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Figure 10. (a) Comparison of steady-state response curve with the computed transient evolution
for various Q. Parameter values are Pes = ∞, β = 0.5, and χ = 0.5. For each Q, the crosses
represent the deformation of a time-evolving bubble starting from a circle (D = 0) at t = 0. The
time increment between crosses is ∆tm = 0.75 for Q = 0.1, 0.2, 0.3 and ∆tm = 0.5 for Q = 0.4, with
the final increment given by ∆tm = 0.45. For Q = 0.1, 0.2, and 0.3 the time-dependent evolution
approaches a steady state, whereas for Q = 0.4 the bubble evolves without limit until an unsteady
cusped formation is reached. (b) Bubble profiles for the time-dependent evolution shown in (a), in
the case Q = 0.4.

a calculation, depending on the time and space intervals and the method used. Thus,
there was no need to renormalize the surfactant concentration periodically throughout
the calculation as has often been found necessary to prevent degradation of accuracy
(see e.g. Stone & Leal 1990). For all the results reported in the next section, it was
checked that decreasing the time step or the space interval did not affect the results.
As a means of verification, it was checked that the transient calculations gave results
in complete agreement with the exact steady-state solutions exhibited in the previous
section.

5.5. Transient behaviour, numerical results

A comparison of the steady-state response curve with the results of transient cal-
culations for several values of the capillary number Q is shown in figure 10. The
parameter values are β = 0.5, χ = 0.5, and Pes = ∞. The crosses for fixed Q depict
the deformation of a time-evolving bubble starting from a circle with D = 0 at t = 0.
Note that for Q < Qc the crosses indicate that a steady bubble solution is quickly
reached, and the steady deformation is in precise agreement with the exact steady
solution of the previous section (denoted by a solid curve). In contrast, initial shapes
and surfactant distributions that are ‘near’ a steady solution on the upper branch of
the response curve did not evolve back to a steady shape. Hence, the upper portion
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Figure 11. Plot of ln κ versus time for the unsteady calculations of figure 10, in the cases Q = 0.3
and Q = 0.4. For Q = 0.3 the evolution approaches a steady state, whereas for Q = 0.4 it exhibits
rapid growth indicative of singularity formation. Rapid growth is also observed for Q = 0.4 and
Pes = 10 (weak diffusion). Inset: the approach to the singularity in the case Q = 0.4, Pes = ∞ is
described by the functional form κ ∼ c(tc − t)−1.63, where tc = 4.03 is the estimated critical time.
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Figure 12. Surfactant concentration for the unsteady calculation of figure 10, in the case Q = 0.4,
Pes = ∞. The curves are shown for t = 0.5 to 3.95 with the time increments given in figure 10.

of each response curve is a branch of unstable solutions. When Q > Qc there is no
allowable steady-state solution. Thus, the bubble evolves without limit. Only a couple
of outcomes are consistent with the form (25) of the conformal map and conditions
(26), (29). One is that the bubble oscillates indefinitely, i.e. a limit cycle is approached.
The other is that an unsteady cusped formation is achieved. Our numerical evidence
for Q = 0.4 > Qc suggests that the latter outcome comes to pass.

The transient bubble profiles for Q = 0.4 are displayed in figure 10(b). A plot of
ln κ versus time (figure 11), where κ is the tip curvature, provides strong evidence that
a true cusp singularity is realized in finite time, despite positive surface tension over
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Figure 13. (a) Bubble profiles for transient evolution with parameter values Pes = 0.1, β = 0.5,
χ = 0.5, and Q = 0.6. The time interval between successive profiles is ∆tp = 1.0. (b) Plot of ln κ
versus time for the parameter values in (a). The evolution approaches a steady state.

the entire surface. The figure demonstrates that the blow-up for Pes = ∞ exhibits
the functional form κ ∼ c1(tc − t)−1.63 where tc = 4.03 is the estimated critical time,
and the numerical uncertainty in the exponent is estimated to be ±0.05. As shown
by figure 12, the need to resolve a rapid change in the slope of Γ at the equator
(this behaviour is absent in the steady solutions) limits how close we can get to tc.
This in turn limits the number of decades of scaling behaviour exhibited in figure 11.
Similar blow-up is observed for sufficiently large but finite Pes (i.e. weak surfactant
diffusion), since the response curve has the same form as for Pes = ∞ (see figure 11).
For comparison, the log-curvature is also plotted using the parameter values Q = 0.3,
Pes = ∞, for which the evolution approaches a steady state.

Finally, the effect of increasing surface diffusion is illustrated in figure 13. Here
the time-dependent interface profiles and curvature are shown for parameter values
Q = 0.6 and Pes = 0.1. As expected, the evolution approaches a steady state, despite
a value of Q that is considerably higher than that which led to unsteady cusped
bubbles for Pes � 1.

In summary, the numerical results provide strong evidence that a true cusp sin-
gularity occurs in finite time for a bubble evolving in an Antanovskii-type straining
flow with variable surface tension. The singularity is avoided in the case of constant
surface tension. The formation of an unsteady cusped bubble at a critical value of
capillary number Q is viewed as the onset to tip streaming.

Pozrikidis also considers the transient evolution with surfactant. His results are for
the most part consistent with the present work. For example, when ε = 0.05, β = 0.5,
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χ−1 Qc

2.0 0.39
3.0 0.41
5.0 0.45
7.0 0.47

Table 1. Location of the turning point Qc for β = 0.1, Pes = ∞,
as a function of the initial amount of surfactant χ.

Q = 0.6 and Pes = 20 or 200 the computations in Pozrikidis (1998) show that the
bubble evolves toward an unsteady cusped shape much like that shown in figures 10
and 11. However, the numerics breaks down before the curvature gets too large,
and evidence of growth of curvature is not as strong as in the present work. The
results do differ somewhat from those presented here in the case β = 0.2, Pes = 20.
For these parameter values, the bubble is observed to evolve toward a cusped shape
as in the previous example, but instead of achieving a true cusp (as occurs for the
exact mathematical solution of the form (25)) the curvature saturates and narrow jets
stream out from the bubble tips. The difference with our result is probably due to the
sensitivity of the evolution near highly cusped interfaces, as described earlier.

6. Discussion
Despite the drastic simplifications employed in our analysis, it is interesting to

compare the theoretically predicted Qc, at which the bubble makes a transition from
a steady rounded configuration to the unsteady cusp-like formation, to the values
obtained in Taylor’s experiment. There are three remaining parameters, β, χ, and Pes,
that need to be determined from the experimental conditions. Although this cannot
be precisely done for the fluids employed by Taylor† the parameter values can be
estimated using representative values for the physical constants. The modified surface
Péclet number typically satisfies Pes � 1 and is set to infinity. A representative range
of values for the surface tension σ0 at a clean interface in an oil–water combination
at room temperature is 25–50 dyn cm−1. A typical value for the product RTΓ∞ is
5 dyn cm−1 at room temperature (the maximum packing density Γ∞ does not vary
greatly among fluid combinations) (Charles Malderelli, private communication). This
gives a value for β = RTΓ∞/σ0 in the range 0.1–0.2. Since there is no obvious
characteristic value for χ, we will present values of the critical capillary number for a
range of this parameter.

Table 1 presents the calculated value of the critical capillary number for β = 0.1,
ε = 0.01 and a range of χ. The calculated values of Qc are not very sensitive to
the value of χ, and they compare favourably with the experimentally observed value
Qc = 0.41. For smaller bubbles with ε less than 0.004 the β = 0 response curve has
two turning points, with the first turning point associated with a sudden transition
from a steady rounded to a steady cusped bubble. However, the values of ε and
Qc required for this to happen, namely ε < 0.004 and Qc = 0.61, do not match the
experimental values at the first transition, given by ε = 0.01 and Qc = 0.41. Instead,

† Taylor (1934) filled the four-roller mill with ‘golden syrup’, which is a concentrated sugar
solution. A mixture of carbon tetrachloride and paraffin oil was utilized for the drop phase to
obtain the lowest viscosity ratio µdrop/µliquid = 0.0003.
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they are consistent with the parameter values at the second transition observed by
Taylor, occurring at Q = 0.65 and ε = 0.0025, in which a steady rounded bubble
suddenly transforms to a steady cusp-like bubble. Thus, the two-dimensional model
gives results that are consistent with experimental observation, if we use the β > 0
model with ε = 0.01 to describe the first transition and the β = 0 model with
ε < 0.004 to describe the second one. Justification for using the two different models
follows from the supposition that surfactant is removed from the bubble during
tip streaming, and that the bubble remaining after tip streaming is smaller in size.
The match between theory and experiment may indicate that the simplified model
employed here still incorporates much of the relevant physics.

7. Conclusion
We have considered the transient evolution of an inviscid bubble in a two-

dimensional model of Taylor’s four-roller mill. For bubbles evolving under constant
surface tension with ε > 0.004 (so that the curve D(Q) is monotonic), it is found
that a previously determined steady solution branch is linearly stable for all capillary
numbers, although the bubble is unstable to certain finite-amplitude perturbations.
This answers negatively a conjecture concerning the possible existence of a critical
capillary number for linear instability. The evolution at zero surface tension is found
to lead to unsteady finite-time cusp formation. A general theory of time-dependent
evolution, which includes the existence of a broad class of exact solutions, is also
presented. The theory holds for constant as well as variable surface tension.

We have also considered the effect of variable surface tension, caused by the pres-
ence of surfactant, on the steady-state shape and time-dependent evolution. At issue
is the possible spontaneous occurrence of singularities on the bubble surface, which
may be viewed as a precursor to tip streaming. The form of the steady-state solu-
tion branches and known analytic structure of the time-dependent solution is highly
suggestive of spontaneous singularity formation in the time-dependent evolution for
Q > Qc. Actual finite-time singularity formation in the transient evolution is veri-
fied through numerical calculation. The numerical calculations are greatly simplified
by the analytic structure of the conformal map solution. Analogous behaviour is
observed for finite Pes.

If the formation of finite-time cusp singularities is interpreted as a precursor to
tip streaming, then the surfactant-induced transition from steady to unsteady cusped
bubble provides a mechanism for bubble breakup at small capillary numbers, as is ob-
served in experiment. In contrast, the interfacial pinching observed at constant surface
tension only occurs at larger values of Q. It is not clear whether the general tenden-
cies uncovered here carry over to three-dimensional flow. Numerical calculations for
axisymmetric bubbles and far-field conditions (i.e. the axisymmetric counterpart of
(4)) show behaviour remarkably similar to that for two-dimensional bubbles. Steady
nearly cusped interfacial shapes were computed for ε = 0 by Youngren & Acrivos
(1976), and for other values of ε by Pozrikidis (1998). For ε > 0 the computed steady
(clean bubble) solution branches terminate due to resolution difficulties at the highly
curved tips; however slender body theory (Buckmaster 1972; Sherwood 1984) suggests
that the steady solutions exist for arbitrarily large Q, much as for two-dimensional
clean bubbles. The stability of these solutions has not been ascertained, although
the indications from transient calculations (Pozrikidis 1998) and slender body theory
are that the shapes are unstable above a critical capillary number. Numerical cal-
culations for axisymetric bubbles probably suffer from the same sensitivity to small
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finite-amplitude disturbances at large Q detailed in § 3, so care must be excercised in
their use. As for two dimensions, simulations show that the presence of surfactant
tends to promote cusp formation and tip streaming at capillary numbers for which
the constant surface tension bubble approaches a steady state (Milliken et al. 1993;
Pozrikidis 1998).

Also neglected in our solutions is the flow inside the bubble, since the viscosity of
the inner fluid is assumed negligible. Interior viscous stresses provide an alternative
mechanism for breakup. The scaling (Acrivos & Lo 1978; Hinch & Acrivos 1979)
Qc ∼ λ−1/6 where λ is the viscosity ratio suggests that λ must be very small for
surfactant effects to be the dominant mechanism for breakup. Other factors not
considered in these studies, such as diffusion and/or transport of surfactant from the
interface to the bulk fluid, may also influence the formation of cusped solutions. This
needs to be considered in future work.

Appendix A
We describe the numerical method used to investigate linear stability of the steady

solutions, and the method used to solve for the time-dependent evolution for general
interface shapes. A form of the governing equation for a general mapping function
z(ζ, t) on |ζ| = 1 (without surfactant) that is convenient for numerical computation
has been given by Antanovskii (1994b). In terms of the dimensionless variables defined
in § 2.1, the equation takes the form

2 Im {ztiζzζ} = K(U0 + z̄U1) +K(z̄zt), (A 1)

where

U0 = −z2 and U1 = −ζzζ
{

1

Q|zζ | − Re

[
εz3

ζzζ

]
+H

(
1

Q|zζ | − Re

[
εz3

ζzζ

])}
.

(A 2)
Here H is the Hilbert transform and the operator K is defined by

K(f) =
∂

∂ν
Im {f(ν, t)−H[f(ν, t)]}.

The linearized evolution equation for the perturbation z̃ defined in (15) is obtained
in the standard way. The general power series representation (16) is truncated at
j = N − 2, substituted into the linearized evolution equation, and the resulting
equation is evaluated at N points ζk = eikh on the upper half-semi-circle, where
h = π/(N − 1) and k = 0, . . . , N − 1. This leads to a linear system of ordinary
differential equations of the form AX t = BX where A and B are N ×N matrices and
XT = (â−1, . . . , âN−2). These matrices have the specific form

Aij = [2 Im (iζzsζζ
j)−K(z̄sζ

j)] (ζ = ζi),

Bij = K[U0j + z̄sU1j +U1(zs)ζ
−j] (ζ = ζi),

where

U0j = −2zsζ
j ,

U1j = −ζzsζ[f1 +H(f1)− jζj(f2 +H(f2))]− 3εz2
s ζ

j ,
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with

f1 = − 1

Q|zsζ | Re

[
jζj

ζzsζ

]
+ Re

[
εz3

s

ζzsζ

(
jζj

ζzsζ
− 3ζj

zs

)]
,

f2 =
1

Q|zsζ | − Re

[
εz3

s

ζzsζ

]
for i, j = −1, . . . , N − 2. Taking advantage of the non-singularity of A, we reduce
the problem to a standard eigenvalue problem A−1BX = σX , which is solved by the
software package lapack. In practice we have found it convenient to separately treat
symmetric perturbations where z̃ contains only odd powers of ζ and antisymmetric
perturbations consisting of even powers of ζ. Additionally, a dealiasing procedure
analogous to that described below was found to improve the accuracy of computations
for highly cusped bubbles.

The method used to investigate the time-dependent evolution for general interface
shapes is also described. Represent z and ∂z/∂t = u by truncated Laurent expansions

z(ζ, t) =

N−2∑
m=−1

zm(t)ζm, u(ζ, t) =

N−2∑
m=−1

um(t)ζm,

with z−1 > 0 and Im (u−1) = 0. The discrete version of (36) becomes (Antanovskii
1994b)

N−2∑
m=k−1

(m− k)umz̄m−k +

N−2−k∑
m=−1

mūmzm+k = k
¯̂
U−k, k = 0, . . . , N − 1, (A 3)

where Û−k is the coefficient of ζ−k in the Laurent expansion of U1(ζ, t). Since the
equation for k = 0 is real, the system is supplemented by the relation Im u−1 = 0 to
give 2N equations for the 2N unknowns Re um, Im um, m = −1, . . . , N−2. Given z(ζ, t)
the coefficients zm are obtained from the discrete Fourier transform (DFT). Likewise,
the operatorsH, K , and the coefficients Û−k are evaluated using the DFT. The linear
system (38) can then be solved directly or by employing an iterative technique. We
use the generalized minimum residual method gmres. The coefficients zk are then
updated through the relation

∂zk

∂t
= uk

using a fourth-order Adams–Moulton solver.
In practice, aliasing errors caused by truncation of the system contaminate the

numerical calculation. We therefore perform dealiasing in the calculation by padding
the Fourier representation of z with N modes of zero amplitude, thereby computing
the quantities U0 and U1 with 2N points. With dealiasing, we do not find it necessary
to greatly increase N when the curvature of the bubble ends is large, as is suggested in
Antanovskii (1994b).† In some cases we also employ a spectral filter (see e.g. Krasny
1986) to prevent round-off error in the large-k modes from growing and adulterating
the computations. In the filtering procedure, all Fourier modes satisfying |zk| < δ are
set to zero. A typical value of δ is 10−12.

† Although some terms in the bracketed expression in (A 2) have singularities at ±ζ0 and ±1/ζ0,
where ζ0 is a zero of zζ , the singularity at 1/ζ0 is removed by projection onto + wavenumber
space during the formation of U1 and the singularity at ζ0 is removed by the projection onto −
wavenumber space during the formation of K .
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Appendix B

We derive a simplified expression for I(γ
1/2
2 , t) which is used in (28). Upon perform-

ing the expansion

1

ζ ′

[
ζ ′ + γ

1/2
2

ζ ′ − γ1/2
2

]
=

1

ζ ′
+ 2

∞∑
n=1

γ
n/2
2

ζ ′n+1
,

which holds for γ2 < 1, it is easy to see that

1

2πi

∮
|ζ|=1

Re

[
εγ2

0

ζ ′2

]
= εγ2

0γ2.

It follows that

I(γ
1/2
2 , t) =

εγ2
0

γ2

−
[
εγ2

0

1− γ2
2

γ2

− 1

2πiQ

∮
|ζ|=1

τ

|zζ |
]
.

Some tedious but straightforward algebra can then be performed to obtain the identity

τ

|z(ζ)|
ζ ′ + γ

1/2
2

ζ ′ − γ1/2
2

= τ
1− γ2

2 + γ2/ζ
′2 + 2γ

1/2
2 /ζ ′ − γ2ζ

′2 − 2γ
3/2
2 ζ ′

|γ0(1− 3γ2ζ2)− γ1ζ2(1 + γ2ζ2)| .

Symmetry arguments can be employed to show that only the first two (i.e. constant)
terms in the numerator of the above expression remain after integration over the unit
circle. As a result

I(γ
1/2
2 , t) =

εγ2
0

γ2

−
[
εγ2

0

1− γ2
2

γ2

− 1− γ2
2

2πQ

∫ 2π

0

τ(ν ′, t)
|γ0(1− 3γ2ζ2)− γ1ζ2(1 + γ2ζ2)| dν

′
]

which is the desired equation.
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